REMINDERS:

- Unit 6 Test- TOMORROW!
(Come to class prepared to take your test)
- $2^{\text {nd }}$ Marking Period Ends- NEXT WEKK!

Unit 6

Review Jeopardy

OBJECTIVES

- Review concepts of unit 6 to prepare for test : patterns (adding subtracting, multiplying and dividing), x / y charts, proving equations correct, conjectures, and prime factorization

RULES:

- Students will solve problems in allotted time.
- Students will keep track of their points HAVE PAPER AND PENCIL HANDY
- Students will ask questions if needed!

Categories:

- Addition Patterns and Input Tables
- Multiplication Patterns
- Patterns and Exponents
- Conjectures and Primes

Eundidut

ADDITION

PATTERNS AND

 INPUT TABLES
Finding Addition Patterns

Addition Pattern

Describe this addition pattern.
$1,4,7,10,13, \ldots$

- Choose two adjacent terms.
$1,4,7,10,13, \ldots$
- Subtract the adjacent terms.
$13-10=3$
Three is the number that you add to a term to get the next term.
- Add 3 to each term to check.

1, 4, 7, 10, 13

$$
+3+3+3+3
$$

Three is, in fact, added to each term of the pattern to get the next term.

Show term numbers in terms of n.

100 POINTS

-What is the rule for this addition pattern? $12,24,36,48,60$?
A. Add 10
B. Add 12
C. Subtract 12

200 Points

What would be the $5^{\text {th }}$ term in the pattern for the formula $2 n+5$ (Draw yourself an input table)
A. 18
B. 15
C. 12
D. Need more time

300 Points

In 1996, it cost $32 ¢$ to mail a 1-oz letter, $55 ¢$ to mail a $2-$ oz letter, $78 ¢$ to mail a $3-0 z$ letter, and $\$ 1.01$ to mail a $4-$ oz letter. If the pattern continues, how much did it cost to send a 7 -oz letter?
A. 1.93
B. $\$ 1.47$
C. $\$ 1.70$

MULTPLICATION

PATTERNS

Describe the multiplication pattern!

$$
4,12,36,108,324
$$

1) Look at the first two terms: 4 and 12
2) THINK MULTIPLICATION: How do we get from 4 to 12 ?
3) Check to see if your pattern is correct with the remaining terms

100 Points

- $2,6,18,54, \ldots$. What is the next term in the pattern?
A. 108
B. 68
C. 162

200 POINTS

- Describe the Multiplication Pattern!
- $120,60,30,15,7.5$
A. Multiply by 2
B. Multiply by .5 or $1 / 2$
C. Subtract

300 Points

Solve.

A culture of bacteria quadruples (increases by a factor of 4) every hour. At the beginning, 100 bacteria are discovered. How many bacteria will there be after 5 hours?

There will be \square bacteria after 5 hours.

$$
7 \cdot 4=\square
$$

A.64,000

 B. 400
C.1,600

D. 102,400

PATTERNS

\&

EXPONENTS

We use exponents to show repeated multiplication of a number that we call the base.

The exponent tells how many times to use the base as a factor.

The base and exponent together are called a power.

To expand a power, write out all the factors.
Here are examples of the expanded form of two powers:

- a power that has an exponent of 4
- a power that has an exponent of 5

$$
5^{4}=5 \cdot 5 \cdot 5 \cdot 5
$$

$3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

More Patterns

Rule: 3×2^{n}

Term	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Term Value	3×2^{1} 3×2	3×2^{2}		
6				

100 Points

$125^{0}=$

A) 0
B) 125
C) 1

200 Points

$10+(2+1)^{3} \div 9$

A) 5
 B) 13
 C) 81

300 Points

Term	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Term Value				

Rule: 2×5^{n}

What will our answer be if we use term 3 for our

- Exponent? Term
A. 30
B. 250
C. 20

CONJECTURES

\&
PRIMES

Is it

* A whole number great than 1.

Has two whole number factors.

* Examples:

2-2 is prime. It is a whole number greater than 1. It has exactly two whole number factors 1 and 2.
$\nless 7-7$ is prime. It is a whole number greater than 1. It has exactly two whole number factors 1 and.

Is It

*A whole number greater than 1.

* Has MORE than two whole number factors.
* EXAMPLES:

12-12 is composite because it has more than two whole number factors. 1,2,3,4,6,12
*CAN YOU THINK OF ANY COMPOSITE Numbers?

CONJECTURES:

- To make an educated attempt at answering a question based on known information. It could be true, but not yet proven to be true.

Least Common Multiple (LCM)

Find the LCM of 12 and 36.

- Make factor trees for 12 and 36 .

Write the prime factorizations of 12 and 36 .

$$
\begin{aligned}
& 12=2 \cdot 2 \cdot 3=2^{2} \cdot 3 \\
& 36=2 \cdot 2 \cdot 3 \cdot 3=2^{2} \cdot 3^{2}
\end{aligned}
$$

- Find the greater power of each factor.

There are two different factors: 2 and 3 .
The greater power of 2 in the prime factorizations is 2^{2}.
The greater power of 3 in the prime factorizations is 3^{2}.

- Calculate the LCM.

$\operatorname{LCM}=2^{2} \cdot 3^{2}=4 \cdot 9=36$
The LCM is the product of the greater power of each prime factor in the prime factorizations.
The LCM of 12 and 36 is 36 .

Greatest Common Factor (GCF) Find the GCF of 12 and 36.

- Make factor trees for 12 and 36.

- Write the prime factorizations of 12 and 36 .

$$
\begin{aligned}
& 12=2 \cdot 2 \cdot 3 \\
& 36=2 \cdot 2 \cdot 3 \cdot 3
\end{aligned}
$$

- Line up and circle any matching factors.

$$
\begin{aligned}
& 12=2 \cdot 2 \cdot 2 \cdot 3 \\
& 36=2 \cdot 2 \cdot 3 \cdot 3 \cdot 3
\end{aligned}
$$

- Multiply each factor that has a match.

GCF $=2 \cdot 2 \cdot 3=12$
There are two matches of the factor 2 , and there is one match of the factor 3 . The GCF of 12 and 36 is 12 .

100 Points

Which number is an example of a PRIME number?
A. 21
B. 4.4
C. 10
D. 15

200 Points

- Which is a counterexample to the conjecture? "The sum of two prime numbers is always an even number?"

$$
\begin{aligned}
& \text { A. } 17+2=19 \\
& \hline \text { B. } 3+7=10 \\
& \text { C. } 1+7=8 \\
& \text { D. } 1+2=3
\end{aligned}
$$

300 Points

What would be the LCM for 15 and 6 ? (Draw a Prime Factorization Tree to help you determine the LCM):
A. 3
B. 90
C. 30

400 Points

What is the GCF of 36 and 24? (Draw a Prime Factorization Tree to help you determine the GCF).
A. 72
B. 12
C. 9

GREAT JOB!!!

How Many Points???

QUESTIONS?

- If you need help, please come to Office hours today at 2 PM with SPECIFIC QUESTIONS.
- ©

UNIT 6 TEST TOMORROW ©

